試題

[第3節]

科目名稱	通訊理論
条所組別	通訊工程學系-通訊甲組

-作答注意事項-

- ※作答前請先核對「試題」、「試卷」與「准考證」之系所組別、科目名稱是否相符。
- 1. 預備鈴響時即可入場,但至考試開始鈴響前,不得翻閱試題,並不得書寫、畫記、作答。
- 2. 考試開始鈴響時,即可開始作答;考試結束鈴響畢,應即停止作答。
- 3.入場後於考試開始 40 分鐘內不得離場。
- 4.全部答題均須在試卷(答案卷)作答區內完成。
- 5.試卷作答限用藍色或黑色筆(含鉛筆)書寫。
- 6. 試題須隨試卷繳還。

科目名稱:通訊理論

本科目共2頁 第1頁

系所組別:通訊工程學系-通訊甲組

- 1. (20%) Let $X(f) \triangleq \int_{t=-\infty}^{\infty} x(t) e^{-j2\pi f t} dt$ be the spectrum, i.e., the continuous time Fourier transform (CTFT), of a <u>deterministic complex-valued</u> continuous energy signal x(t). Consider two such signals, x(t) and y(t), with spectra X(f) and Y(f), respectively.
 - (a) (10%) Describe and prove the Parseval's Theorem for x(t) and X(f).
 - (b) (10%) Describe and prove the convolution property for x(t), y(t), X(f), and Y(f).
- 2. (20%) Consider the deterministic energy signal $x(t) = \text{sinc}(2f_0t)$ and power signal $y(t) = \cos(2\pi f_0 t)$, where f_0 is a fixed number.
 - (a) (10%) Compute the autocorrelation function and energy spectral density of x(t).
 - (b) (10%) Compute the autocorrelation function and power spectral density of y(t).
- 3. (20 %) Consider the bandpass single side band (SSB) signal

$$x_c(t) = \frac{1}{2} A_c m(t) \cos(2\pi f_c t) - \frac{1}{2} A_c \hat{m}(t) \sin(2\pi f_c t),$$

where m(t) is the message signal, $\hat{m}(t)$ is the Hilbert transform of m(t), and f_c is the carrier frequency. Let $x_{LP}(t)$ be the lowpass complex envelope of $x_c(t)$.

- (a) (10%) What is the spectrum of $x_c(t)$ when $m(t) = \text{sinc}(2f_0t)$, $f_0 \ll f_c$?
- (b) (10%) What is the spectrum of $x_{LP}(t)$ when $m(t) = \text{sinc}(2f_0t)$, $f_0 \ll f_c$?

科目名稱:通訊理論

本科目共2頁第2頁

系所組別:通訊工程學系-通訊甲組

- 4. (20 %) A transmitter sends a complex-valued symbol s with $E\{|s|^2\} = E_s$ over a wireless channel. The receiver has K antennas with received signals $x_k = h_k s + n_k$, $k = 1, 2, \dots, K$. Each h_k denotes the complex-valued channel gain and n_k is the independent complex-valued zero-mean Gaussian noise with variance $E\{|n_k|^2\} = \sigma^2$ at the k-th receive antenna.
 - (a) (10%) The channel gains $h_k, \forall k$, are known. The signal at the linear combiner output is

$$z = \sum_{k=1}^K w_k^* x_k ,$$

where each w_k is the combining weight and $\binom{1}{s}$ denotes the complex conjugate operation. What is the signal-to-noise ratio (SNR) of z for a particular set of combining weights, w_k , $\forall k$?

- (b) (10%) What values of $w_k, \forall k$, lead to the maximum SNR in part (a)?
- 5. (20 %) Consider the transmission of <u>complex-valued</u> symbol s over the AWGN channel x = s + w, where s is taken equally probably from $s \triangleq \{1+j, 1-j, -1+j, -1-j\}$ and w is circularly Gaussian distributed with zero mean and variance N_0 .
 - (a) (3 %) What is the likelihood function of receiving x when a particular value of s from s is transmitted?
 - (b) (7%) What is maximum likelihood detection (MLD) of s from observed x?
 - (c) (10 %) What is the probability $P\{\hat{x} \neq 1+j | s=1+j\}$, i.e. the probability that s=1+j is transmitted but $\hat{x} \neq 1+j$ is detected, for the MLD in part (b)?

試 題

[第4節]

科目名稱	線性代數與機率
系所組別	通訊工程學系-通訊甲組

-作答注意事項-

- ※作答前請先核對「試題」、「試卷」與「准考證」之<u>系所組別、科目名稱</u>是否相符。
- 預備鈴響時即可入場,但至考試開始鈴響前,不得翻閱試題,並不得書寫、書記、作答。
- 2. 考試開始鈴響時,即可開始作答;考試結束鈴響畢,應即停止作答。
- 3.入場後於考試開始 40 分鐘內不得離場。
- 4.全部答題均須在試卷(答案卷)作答區內完成。
- 5.試卷作答限用藍色或黑色筆(含鉛筆)書寫。
- 6. 試題須隨試卷繳還。

科目名稱:線性代數與機率

本科目共2頁 第1頁

系所組別:通訊工程學系-通訊甲組

線性代數試題

1. (10%) A matrix B is said to be a square root of a matrix A if BB=A. (1) Find square roots of $A=\begin{bmatrix}5&5\\5&10\end{bmatrix}$. (2) Prove that for a 2×2 matrix A whose determinant is negative, then A has no real square root.

2. (10%) Show that the following matrices form a basis for M_{22} .

$$\begin{bmatrix} 3 & 4 \\ 3 & -4 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -8 \\ -12 & -2 \end{bmatrix}$$

3. (10%) Are there values of r and s for which

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & r-2 & 2 \\ 0 & s-1 & r+2 \\ 0 & 0 & 3 \end{bmatrix}$$

has rank 1? Has rank 2? Has rank 3? Has rank 4?

4. (10%) Find a matrix S such that $S^2 = A$, given that $A = \begin{bmatrix} 1 & 3 & 5 \\ 0 & 4 & 5 \\ 0 & 0 & 9 \end{bmatrix}$

5. (10%) In R^3 , consider the line l given by the equations

$$x = -1, y = t, z = -t$$

and the line m given the equation

$$x=2s, y=1+s, z=s$$

Let P be a point on l and Q be a point on m, find the values of t and s such that $||P - Q||^2$ is minimized.

科目名稱:線性代數與機率 本科目共 2 頁 第 2 頁

系所組別:通訊工程學系-通訊甲組

機率試題

6. (32%) The waiting time X of a customer at a taxi stand is zero if the customer finds a taxi parked at the stand, and a uniformly distributed random length of time in the interval [0,1] (in hours) if no taxi is found upon arrival. The probability that a taxi is at the stand when the customer arrives is equal to 0.7. Let the cumulative distribution function (cdf) of X be represented in the form:

$$F_X(x) = pF_Y(x) + (1-p)F_Z(x),$$

where $0 and <math>F_Y(x)$ is the cdf of *continuous* random variable Y, while $F_Z(x)$ is the cdf of *discrete* random variable Z. Find the following:

- a) $(4\%) F_Y(x)$.
- b) (4%) p.
- c) (4%) $F_Z(x)$.
- d) (4%) Probability density function (pdf) of Y.
- e) (4%) Probability mass function of Z.
- f) (6%) Mean of X.
- g) (6%) Variance of X.
- 7. (18%) Let X be a continuous random variable with cdf $F_X(x)$ and pdf $f_X(x)$. Consider $Y = \sqrt{X}$.
 - a) (4%) The event $\{Y \leq y\}$ is equivalent to what event involving X itself?
 - b) (4%) Use part a) to find the cdf of Y in terms of $F_X(x)$.
 - c) (4%) Use part b) to find the pdf of Y in terms of $f_X(x)$.
 - d) (6%) If X denotes the squared envelope of a radio signal with the following pdf:

$$f_X(x) = \frac{1}{2\alpha^2} e^{-x/2\alpha^2}, \ x > 0, \ \alpha > 0,$$

where α is a constant, use part c) to find the pdf of the envelope Y.