試 題

[第1節]

科目名稱	通訊原理	
系所組別	通訊工程學系-通訊甲組	

-作答注意事項-

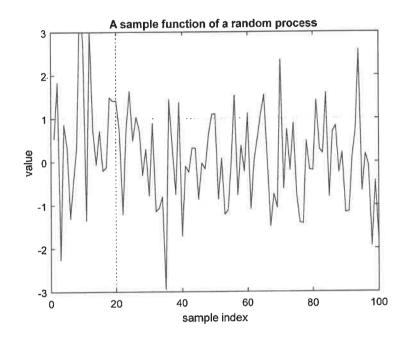
- ※作答前請先核對「試題」、「試卷」與「准考證」之<u>系所組別、科目名稱</u>是否相符。
- 1. 預備鈴響時即可入場,但至考試開始鈴響前,不得翻閱試題,並不得書寫、書記、作答。
- 2. 考試開始鈴響時,即可開始作答;考試結束鈴響畢,應即停止作答。
- 3.入場後於考試開始 40 分鐘內不得離場。
- 4.全部答題均須在試卷 (答案卷) 作答區內完成。
- 5.試卷作答限用藍色或黑色筆(含鉛筆)書寫。
- 6. 試題須隨試卷繳還。

科目名稱:通訊原理

本科目共2頁第1頁

系所組別:通訊工程學系-通訊甲組

- 1. (20%) The additive white Gaussian noise (AWGN) n(t) appears in communication system.
 - (a) (10 %) Please give a mathematical definition for the AWGN n(t).
 - (b) (10 %) Suppose now you are given a sample function n(t), $t = 0, 1, \dots, N-1$, depicted below. Is it a sample function of an AWGN n(t)? Please address the steps and methods that you use to justify your answer.



2. (20%) Consider a periodic signal x(t) with period T_0 . Over one period, the

$$x(t) = \Pi\left(\frac{2t}{T_0}\right) - \frac{1}{2}, \quad -\frac{T_0}{2} < t < \frac{T_0}{2},$$

where $\Pi(\cdot)$ is the unit rectangular pulse. The signal x(t) is filtered by an ideal lowpass filter with cutoff frequency $\frac{3}{2T_0}$ to produce output signal y(t).

- (a) (2 %) Plot x(t) for $T_0 = 1$.
- (b) (5 %) What is the output signal y(t)?
- (c) (10 %) What is the autocorrelation of the output signal y(t)?
- (d) (3 %) What is the power spectral density of the output signal y(t)?

科目名稱:通訊原理

本科目共2頁第2頁

系所組別:通訊工程學系-通訊甲組

- 3. (20 %) The frequency modulated signal is denoted by $x(t) = A_c \cos \left(2\pi f_c t + 2\pi f_d \int_0^t m(\tau) d\tau \right)$, where
 - f_c is the carrier frequency, f_d is the frequency deviation constant, and m(t) is the message signal. Consider now $m(t) = A_m \cos(2\pi f_m t)$.
 - (a) (2%) Show that the modulated signal may be expressed as $x(t) = A_c \cos(2\pi f_c t + \beta \sin(2\pi f_m t))$. Please give the value of β .
 - (b) (3 %) What is the complex envelope of $x(t) = A_c \cos(2\pi f_c t + \beta \sin(2\pi f_m t))$?
 - (c) (10 %) What is the continuous-time Fourier transform of $x(t) = A_c \cos(2\pi f_c t + \beta \sin(2\pi f_m t))$?

 You may use Bessel function to express your result.
 - (d) (5 %) What is the time average power of $x(t) = A_c \cos(2\pi f_c t + \beta \sin(2\pi f_m t))$?
- 4. (20%) The received (complex-valued) baseband signal is x = hs + w, where h is the known channel gain, w is the additive white Gaussian noise with zero mean and variance σ^2 . The transmitted symbol s comes from the 8-PSK constellation set $S = \{e^{j2\pi k/8} : k = 0, 1, \dots, 7\}$.
 - (a) (2 %) What is the constellation diagram for S?
 - (b) (3 %) What is the likelihood function for detecting transmitted s from received x?
 - (c) (5 %) What is the decision rule for the maximum likelihood detector (MLD) to detect transmitted s? Please reduce to the simplest form as possible as you can.
 - (d) (5 %) What are the decision regions for the MLD?
 - (e) (5 %) What is the symbol error probability for the MLD?
- 5. (20%) A stereo frequency modulation (FM) broadcasting is to transmit a left channel signal $m_1(t)$, a pilot $p(t) = \cos(2\pi f_p t)$, and a right channel signal $m_2(t)$ at a time through frequency division multiplexing and frequency modulation. Assume that $m_1(t)$ and $m_2(t)$ are of the same bandwidth 15 kHz and pilot frequency is $f_p = 19$ kHz.
 - (a) (10 %) Give your design for the stereo FM transmitter using a block diagram. You may give spectra of signals in the block diagram if necessary.
 - (b) (10 %) Give your design for the stereo FM receiver using a block diagram. You may give spectra of signals in the block diagram if necessary.

試 題

[第2節]

科目名稱	線性代數
条所組別	通訊工程學系-通訊甲組

-作答注意事項-

- ※作答前請先核對「試題」、「試卷」與「准考證」之<u>系所組別、科目名稱</u>是否相符。
- 1. 預備鈴響時即可入場,但至考試開始鈴響前,不得翻閱試題,並不得書寫、 畫記、作答。
- 2. 考試開始鈴響時,即可開始作答;考試結束鈴響畢,應即停止作答。
- 3.入場後於考試開始 40 分鐘內不得離場。
- 4.全部答題均須在試卷(答案卷)作答區內完成。
- 5.試卷作答限用藍色或黑色筆(含鉛筆)書寫。
- 6. 試題須隨試卷繳還。

科目名稱:線性代數

本科目共 1 頁 第 1 頁

系所組別:通訊工程學系-通訊甲組

- 1. Let $C = \begin{bmatrix} a & b \\ 1 & 1 \end{bmatrix}$, $D = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$, $E = \begin{bmatrix} 0 & a \\ 1 & b \end{bmatrix}$. Answer the following questions with the appropriate matrix names (C, D or E). Note: No partial scores are given for each question.
 - a. (5 pts.) Identify matrices that are row equivalent when a is 1 and b is 0.
 - b. (5 pts.) Determine which matrix has $\{0\}$ as the orthogonal complement of its row space when a is 0 and b is 1.
 - c. (5 pts.) Which of these matrices satisfies the condition that the rank plus the nullity equals 2?
 - d. (5 pts.) Which matrix is not full-rank when a and b are 1's?
 - e. (5 pts.) Identify the matrix that contains row vectors that can span R^2 for all real numbers a and b, given that a is not equal to b.
 - f. (5 pts.) Determine which matrix could be singular, given that the product of a and b is not equal to 0.

2. Determinant identity

- a. (10 pts.) For a given matrix $\mathbf{A} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$, identify all possible matrices \mathbf{B} , where the last row of \mathbf{B} is $\mathbf{0}$, such that the determinants of \mathbf{AB} and \mathbf{BA} are equal.
- b. (25 pts.) Prove that if A and B are matrices of sizes $m \times n$ and $n \times m$, then $\det(I_m + AB) = \det(I_n + BA)$. Hint: $\begin{bmatrix} I_n & -B \\ A & I_m \end{bmatrix}$.
- 3. Let $T_1 : \mathbf{P}_1 \to \mathbf{P}_2$ be the linear transformation defined by $T_1(\mathbf{p}(x)) = x \cdot \mathbf{p}(x)$ and let $T_2 : \mathbf{P}_n \to \mathbf{P}_n$ be the linear operator defined by $T_2(\mathbf{p}(x)) = \mathbf{p}(x+1)$, where $B = \{1, 2x\}$ and $B' = \{1, x, 2x^2\}$ are bases for \mathbf{P}_1 and \mathbf{P}_2 , respectively. Every case requires <u>detailed information</u>.
 - a. (10 pts.) Determine the coordinate vectors of $(x + 1)_B$ and $(x^2 + x)_{B'}$.
 - b. (10 pts.) Represent the linear transformation T_1 from P_1 to P_2 as the matrix $[T_1]_{B\to B'}$.
 - c. (10 pts.) Find the matrix representation $[T_2]_{B'}$ of the linear transformation T_2 in P_2 .
 - d. (5 pts.) Show the matrix representation of the composition of two linear transformations $[T_2 \circ T_1]_{B \to B^*}$.

試題

[第2節]

科目名稱	機率
系所組別	通訊工程學系-通訊甲組

-作答注意事項-

- ※作答前請先核對「試題」、「試卷」與「准考證」之<u>系所組別、科目名稱</u>是否相符。
- 1. 預備鈴響時即可入場,但至考試開始鈴響前,不得翻閱試題,並不得書寫、 書記、作答。
- 2. 考試開始鈴響時,即可開始作答;考試結束鈴響畢,應即停止作答。
- 3.入場後於考試開始 40 分鐘內不得離場。
- 4.全部答題均須在試卷(答案卷)作答區內完成。
- 5.試卷作答限用藍色或黑色筆(含鉛筆)書寫。
- 6. 試題須隨試卷繳還。

科目名稱:機率

本科目共2頁第1頁

系所組別:通訊工程學系-通訊甲組

- 1) (15 points) Let $\Omega = \{1, 2, 3, 4, 5, 6\}$ be the sample space. Define three events: $A = \{1, 2\}$, $B = \{2, 3\}$, and $C = \{4, 5, 6\}$. The probability measure is unknown, but it satisfies the three axioms of probability.
 - a) (5 points) What is the probability of $A \cap C$?
 - b) (5 points) What is the probability of $A \cup B \cup C$?
 - c) (5 points) State a condition on the probability of either B or C that would allow them to be independent events.
- 2) (20 points) The probability density function (pdf) of a random variable X is shown in Fig. 1.

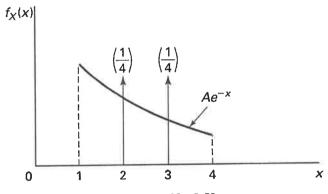


Fig. 1: pdf of X

- a) (5 points) Compute the value of A.
- b) (10 points) Find the cumulative distribution function (cdf) of X, that is, $F_X(x)$.
- c) (5 points) Compute the probability of the event $\{2 \le X < 3\}$.
- 3) (25 points) Consider a communication channel corrupted by noise. Let X be the value of the transmitted signal and Y the value of the received signal. Assume that the conditional density of Y given X is Gaussian, that is,

$$f_{Y|X}(y|x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y-x)^2}{2\sigma^2}\right)$$

and that X takes on only the values +1 and -1 equally likely.

- a) (5 points) Find the pdf of X, that is, $f_X(x)$.
- b) (10 points) Find the pdf of Y, that is, $f_Y(y)$.
- c) (10 points) What is the conditional density of X given Y, that is, $f_{X|Y}(x|y)$.

科目名稱:機率 本科目共 2 頁 第 2 頁

系所組別:通訊工程學系-通訊甲組

4) (20 points) Let X_1 and X_2 be independent and exponentially distributed random variables with pdf

$$f_{X_i}(x) = rac{1}{\mu} \exp\left(-rac{x}{\mu}
ight) u(x), \quad i=1,2,$$

where $\mu > 0$ and u(x) is the unit step function. Define $Z \triangleq \max(X_1, X_2)$.

- a) (10 points) Find the cdf of Z, that is, $F_Z(z)$.
- b) (10 points) Find the pdf of Z, that is, $f_Z(z)$.
- 5) (20 points) In your physics courses, you have studied the concept of momentum p = mv in the deterministic, that is, nonrandom sense. In reality, measurements of mass m and velocity v are never precise, thereby giving rise to an unavoidable uncertainty in these quantities. In this problem, we treat these quantities as random variables. So, consider a random variable mass M with given pdf $f_M(m)$ and a random variable velocity V with given pdf $f_V(v)$. We are also given the averages $\mu_M = E[M]$ and $\mu_V = E[V]$ (that would presumably correspond to our measurements in the physics course). Assume that M and V are independent and nonnegative random variables.
 - a) (5 points) Express the cdf of the momentum P = MV, that is, $F_P(p)$, in terms of the known pdf's $f_M(m)$ and $f_V(v)$.
 - b) (10 points) Find the pdf of P = MV, that is, $f_P(p)$, in terms of $f_M(m)$ and $f_V(v)$.
 - c) (5 points) Determine the expected value of the momentum $\mu_P = E[P]$ as a function of μ_M and μ_V .